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Contributions on the Extension of the Optimal Homotopy Asymptotic
Method in Solution of the Flow of the Polymeric Materials

REMUS-DANIEL ENE*
Politehnica University of Timi s oara, Department of Mathematics, 300006, Timisoara, Romania

An incompressible MHD flow of two-dimensional upper-convected Maxwell fluid over a porous stretching
plate with suction is studied. The nonlinear differential equation is solved approximately by means of the
Optimal Homotopy Asymptotic Method (OHAM). Multiple solutions are given, showing a very good agreement
between the analytical and numerical solutions. This procedure is very efficient in practice, ensuring a very
rapid convergence of the solutions after only one iteration.
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To obtain the plastic materials from the polymers by
means of injection procedure, it is necessary to know well
determined flow conditions. From the mathematical point
of view, the flow problem can be solved with Optimal
Homotopy Asymptotic Method in the conditions presented
in this work.

In practical applications, non-Newtonian fluids are more
appropriate than Newtonian fluids and therefore, the flows
of non-Newtonian fluids have been analyzed by numerous
researchers. Examples of the flow of non-Newtonian fluids
occur in a large variety of applications: plastic polymers,
synthetic fibres, drilling muds and so on. One type of fluids
in which the relaxation type phenomena can be considered
is known as Maxwell model. Some investigations in this
field are made by the engineers, physicians and computer
scientists. Sakiadis [1] first studied various aspects of the
stretching problem: the flow due to a semi-infinite
horizontally moving wall in an ambient fluid. Phan-Thieu
[2] and Zheng et al. [3] considered the plane and
axisymmetric stagnation flows in a Maxwell fluid using
the shooting and boundary element method. Sadeghy et
al. [4] considered the problem of hydrodynamic Sakiadis
flow of an upper-convected Maxwell fluid over a rigid plate
moving steadily in an otherwise quiescent fluid. Homotopy
analysis method is used by Hayat et al. [5] to solve non-
linear differential equation of the upper-convected Maxwell
fluid. Sahoo [6] investigated the effects of partial slip on
the MHD flow and mass transfer of an electrically
conducting second grade fluid past an axisymmetric
stretching sheet.

The objective of the present paper is to propose an
accurate procedure to nonlinear differential equation of
the magnetohydrodynamic flow problem of an upper-
convected Maxwell fluid over a porous stretching plate
using OHAM. A version of the OHAM is applied in this study
to derive highly accurate analytical expressions of the
solutions. The main advantage of this approach is the
control of the convergence of approximate solutions in a
very rigorous way. A very good agreement was found
between our approximate solutions and numerical results,
which proves that our method is very efficient in practice
and accurate.

Equation of motion
 If we consider the steady, incompressible, two-

dimensional flow of an upper-convected Maxwell fluid over
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a porous stretching plate, by imposing an uniform magnetic
field  Bo along the  y -  direction and neglecting the induced
magnetic field, the equations which govern the steady flow
can be written in the form

where u, v are the velocity components, ρ is the density, δ
is the electrical conductivity and Sxx, Sxy, Syx, Syy  are the
components of the extra tensor  S.

Using the boundary layer approximations [4]

     

the flow in the absence of the pressure gradient is governed
by eq. (1) and

     (6)

where λ is the relaxation time and ν is the kinematic
viscosity of fluid.

The relevant initial/boundary conditions for the flow-
problem are

     (7)

in which C  is the stretching rate, and  Vo > 0  is the suction
velocity.

Introducing the stream function ψ such that

      (8)
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then eq. (1) is identically satisfied and eq. (6) becomes

     (9)

Using the similarity transformations

    (10)

then, eq. (8) become
    (11)

The governing equation is obtained substituting eq. (11)
into  eq. (9):

          (12)

where 
The initial/boundary conditions become:

   (13)

with 
In the following, the nonlinear differential equation (12)

with initial/boundary conditions (13) can be solved using
OHAM.

Basic ideas of the optimal homotopy asymptotic
method

 Eq. (12) with initial / boundary conditions (13) can be
written in a more general form

    (14)

where N  is a given nonlinear differential operator depending
on the unknown function f(η), subject to the initial /
boundary conditions

    (15)

Let fo(η) be an initial approximation of  f(η) and L an
arbitrary linear operator such as

    (16)

It should be emphasized that this linear operator L  is not
unique.

If p ∈ [0, 1] denotes an embedding parameter and  F  is
an analytic function, then we propose to construct a
homotopy [7-11]:

      (17)

with the properties

where H(η, Ci) ≠ 0 is an arbitrary auxiliary convergence-
control function depending on variable η and on a number
of arbitrary parameters C1, C2,...,Cs  unknown now and will
be determined later.

Let we consider the function F in the form

(20)

By substituting eq. (20) into equation obtained by means
of homotopy (17)

(21)

and then equating the coefficients of po and p1, we obtain:

(22)

From eq. (22) we obtain the governing equation of  fo(η)
given by  eq. (16) and the governing equation of  f1(η), i.e.

(23)

where we find the following expression for the nonlinear
operator:

(24)

where the functions hi(η) and gi(η), i = 1,..., m are known
and depend on the function  fo(η) and also on the nonlinear
operator, m being a known integer number.

In this way, taking into account eq. (19), from eq. (20)
for p=1, we obtain the first-order approximate solution
which becomes

(25)

It should be emphasized that fo(η) and fi(η, Ci) are
governed by the linear eqs. (16) and (23) respectively with
boundary conditions that come from the original problem.
It is known that the general solution of nonhomogeneous
linear eq. (23) is equal to the sum of general solution of the
corresponding homogeneous equation and of some
particular solutions of the nonhomogeneous equation.
However, the particular solutions are readily selected only
in the exceptional cases.

In what follows we do not solve eq. (23), but from the
theory of differential equations, taking into considerations
the method of variation of parameters, Cauchy method,
method of influence function, the operator method [12]
and so on, is more convenient to consider the unknown
function f1(η), in the form

(26)

where within expression of Hi(η),hj(η),Cj) appear linear
combinations of some functions hj(a) , the same terms
which are given by the corresponding homogeneous
equation and the unknown parameters  Cj, j = 1,..., s. In the

(18)

(19)
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sum from eq. (26) appear an arbitrary number of m for  such terms.
For instance if hi=sinαη, then we can choose

 We cannot demand that f1=(η, Ci) to be solutions of eq.
(23) but   given by eq. (25) with f=(η, Ci) given by eq.
(26), are the solutions of the eq. (14). This is underlying
idea of our method. The convergence of the approximate
solution f=(η, Ci) given by eq. (25) depends upon the
auxiliary functions H1(η, hi, Cj), j=1,...,s. There are many
possibilities to choose these functions Hi. We try to choose
Hi so that within  eq. (26) the terms   to
be of the same shape with the terms   given by
eq. (24). The first-order approximate solution   also
depend on the parameters Cj, j = 1,...,s. The values of these
parameters can be optimally identified via various methods,
such as: the least-square method, the Galerkin method,
the collocation method, the Ritz method, and so on. The
first option should be minimizing the square residual error:

    (27)

where the residual R is given by

                     (28)

The unknown parameters C1, C2,...Cs  can be identified
from the conditions:

    (29)

With these parameters known (called optimal
convergence-control parameters), the first-order
approximate solution given by eq. (25) is well-determined.

It should be emphasized that our procedure contains
the auxiliary functions Hi(η, fi, Cj),  i=1,...,m, j=1,...,s,  which
provides us with a simple way to adjust and control the
convergence of the approximate solutions. It is very
important to properly choose these functions Hi(η, fi, Cj),
which appear in the construction in the first-order
approximation.

Multiple solutions for the upper-convected Maxwell fluid
with OHAM

 We apply our procedure to obtain approximate solutions
of eqs. (12) and (13). We choose the linear operator of the
form

    (30)

We mention that the linear operator is not unique. Also,
we have freedom to choose:

 here K  is an unknown positive parameter and will be
determined later.

From eq. (16) with the initial/boundary conditions

  (34)

we can obtain the initial approximation in the form:

  (35)

where we used the linear operator given by eq. (30). The
nonlinear operator corresponding to nonlinear differential
eq. (12) is defined as

    (36)

Substituting eq. (35) into eq. (36) it holds that

  (37)

Comparing eqs. (24) and (37) one can get

(38)

The function f1(η) given by eq. (26) becomes

+

                                 (39)

where we have freedom to choose a lot of possibilities for
the unknown functions Hi, i = 1,..., j as follows:

If we choose Hi = Ciη
2 and j=9, i=1,...,9, one can get

(40)

(31)

(32)

(33)

the value of m
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The first-order approximate solution given by eq. (25) is obtained from eqs. (35) and (39)
It is clear that in this way, we can obtain many other solutions.

Numerical results
 We illustrate the accuracy of our procedure comparing results obtained through our procedure with numerical results.

Optimal convergence-control parameters Ci are determined by means of the least-square method, using Wolfram
Mathematica 6.0 software.

For β = 0.5, R = 0.25 and M = 0.75 for every case, we obtain the following results:

For the first-order approximate solution (41), one get:

     (44)

The approximate solution (42) becomes

             (45)

In the last case, the first-order approximate solution (43) is written as

 

        (42)If Hi = Ciη
2 and j =11, i = 1, ..., 11, we have

For Hi = Ciη
2 and j =10, i = 1, ..., 10, the first=order approximate solution becomes
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In figures 1 and 2 are plotted a comparison between the first-order approximate solutions and numerical results
obtained by means of the fourth-order Runge-Kutta method in combination with the shooting method.

In tables 1-6 we present a comparison between the first-order approximate solutions f and f ’ given by eqs. (44 - 46)
respectively, with numerical results for the same values of variable η.

  (46)

Fig. 1 Comparison between the approximate  solution eq. (44) and
numerical solution  in the case β = 0.5, M=0.75, R=0.25:

————— numerical solution;  ………….. approximate solution

Fig. 2 Comparison between the derivative  of the first-order
approximate solution  of the eq. (44) and numerical solution in the

case  β = 0.5, M=0.75, R=0.25:   ————— numerical solution;
                      ................ approximate solution

Table 1
 COMPARISON BETWEEN THE FIRST-ORDER

APPROXIMATE SOLUTION  f  GIVEN BY EQ. (44)
WITH NUMERICAL SOLUTION

   Table 2
COMPARISON BETWEEN THE DERIVATIVE f’

OBTAINED FROM EQ. (44) WITH NUMERICAL
SOLUTION

 Table 3
COMPARISON BETWEEN THE FIRST-

ORDER APPROXIMATE SOLUTION  f GIVEN
BY EQ. (45) WITH NUMERICAL SOLUTION
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From the above tables, it can be seen that the
approximate solutions obtained by the proposed procedure
are nearly identical with numerical solutions.

Also, we note that the accuracy of the obtained results
is growing along with increasing the number of the
parameters Ci in the auxiliary functions Hi.

Conclusions
In the present paper, we found analytic approximate

solutions for the upper-convected Maxwell fluid over a
porous stretching plate applying the Optimal Homotopy
Asymptotic Method. In the construction of the OHAM appear
some distinctive concepts as: the auxiliary functions  H1,
H2, ..., the linear operator L and several optimal
convergence-control parameters C1,C2, ... which ensure a
fast convergence of the all solutions. The obtained results
by OHAM are of the exceptional accuracy using only one
iteration. Our procedure provides us with a simple and
rigorous way to control and adjust the convergence of the
solutions by means the auxiliary functions. The capital

 Table 6
COMPARISON BETWEEN THE DERIVATIVE

f ’OBTAINED FROM EQ. (46) WITH NUMERICAL
SOLUTION

  Table 5
COMPARISON BETWEEN THE FIRST-ORDER

APPROXIMATE SOLUTION f  GIVEN BY EQ. (46)
WITH NUMERICAL SOLUTION

Table 4
COMPARISON BETWEEN THE DERIVATIVE f ’

OBTAINED FROM EQ. (45) WITH NUMERICAL
SOLUTION

strength of the OHAM is its fast convergence, which proves
that this method is very efficient in practice.

OHAM is an adequate approach for the practical interests
like as the flow of the polymeric materials in the injection
procedure.

In the boundary conditions imposed in our problem,
OHAM can be usefully alternative in the searching and
modeling of the polymeric viscous flow fluids.
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